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Figure 1: Shape-aware generative authoring process with Shape n’ Swarm. Left to right: The user arranges a stick figure with
the robots. The user instructs the system with speech. The system interprets the user-manipulated shape and generates a
walking animation.

ABSTRACT
This paper introduces a novel authoring method for swarm user
interfaces that combines hands-on shape manipulation and speech
to convey intent for generative motion and interaction. We refer to
this authoring method as shape-aware generative authoring, which
is generalizable to actuated tangible user interfaces. The proof-of-
concept Shape n’ Swarm tool allows users to create diverse ani-
mations and interactions with tabletop robots by hand-arranging
the robots and providing spoken instructions. The system employs
multiple script-generating LLM agents that work together to han-
dle user inputs for three major generative tasks: (1) thematically
interpreting the shapes created by users; (2) creating animations
for the manipulated shape; and (3) flexibly building interaction by
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mapping I/O. In a user study (𝑛 = 11), participants could easily
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1 INTRODUCTION
Researchers in Tangible and Shape-Changing Interfaces [52] and
Reconfigurable Robotics [74] have long envisioned materials that
dynamically reconfigure in response to user intent. Visions such
as Radical Atoms [23] and Programmable Matter [17] imagine mal-
leable physical interfaces that interpret user inputs and adapt their
form in real-time, enabling seamless, expressive interaction.

In pursuit of these visions, HCI researchers have developed
a range of actuated tangible user interfaces (A-TUIs) using self-
reconfiguring hardware and materials [15, 31, 40, 72]. Complement-
ing these advances, researchers have proposed various authoring
methods to enable user control over actuation. Notably, tangible
manipulation techniques – where users manually shape the inter-
face to record gestures and trigger actuation – have offered intuitive
modes of interaction [43, 51, 61]. However, these approaches often
fall short of the adaptive, intent-interpreting responsiveness envi-
sioned in speculative materials like Radical Atoms or Programmable
Matter.

To illustrate our vision, consider a speculative scenario involv-
ing a nine-year-old child without technical experience. The child
interacts with a soft, clay-like material embedded with sensing and
actuation capabilities. As they intuitively sculpt the material into
the form of a dog, the material continuously senses changes to its
shape. When the child gives a simple verbal command – “Wag his
tail!” – the system draws on both the shape and the linguistic input
to disambiguate the child’s intent. By interpreting the manipulated
form in the context of the speech instructions, the system identi-
fies the relevant region and activates it to simulate tail-wagging
behavior.

This scenario highlights the importance of shape awareness –
incorporating speech with the direct shape-based manipulation
for the system to interpret and respond to the user’s goals. In this
context, the user does not use shape in isolation to communicate
intent to the system; instead, they combine it with speech as part
of a broader interactive dialogue through which intent is expressed
and interpreted. Based on this vision, we introduce shape-aware
generative authoring as a generalizable authoring method and con-
cept that integrates direct shape manipulation and speech to convey
intent for generative motion and interaction for A-TUIs (Figure 2).

Figure 2: Concept behind Shape-aware Generative Author-
ing. The user inputs speech instructions and shape-based
manipulation, which the system interprets for generating
actuation.

In this visionary scenario, we theorize that the combination of
shape and speech is an intuitive workflow for users, allowing the
shape itself to carry semantic intent for robot actuation. To test
this hypothesis, we introduce Shape n’ Swarm, a proof-of-concept
Swarm User Interface (SUI) authoring tool. Shape n’ Swarm en-
ables users to arrange tabletop robots and issue spoken commands
to generate responsive, adaptive behaviors such as motion and
interaction.

The proof-of-concept uses toio robots, an established platform in
HCI research on SUIs [34, 41, 63], which are self-reconfiguring and
easily arranged by hand on 2D tabletop surfaces – making them
well-suited to our tangible authoring paradigm. We use a multi-
agent Large Language Model (LLM) architecture [48, 69], where
dedicated agents interpret both the physical arrangement of robots
and natural language input to generate appropriate actuation via
script-generation.

Through a user study (𝑛 = 11), participants used Shape n’ Swarm
to author expressive animated characters and scenes [10], math-
ematical and geometric physicalizations, and remote I/O control
over physical objects. Our studies reveal that direct tangible shap-
ing with speech offers unique benefits to user ideation, lowers the
barrier of entry to SUI authoring, and enables expressive, diverse
outcomes.

Through flexible interpretation of shape and speech, the con-
cept of shape-aware generative authoring advances the vision of
programmable interactive materials [17, 23] and opens new direc-
tions for reconfigurable TUIs that seamlessly blend user-oriented
semantic shaping and system-oriented generative actuation.

1.1 Contributions
This paper makes the following contributions:

• We introduce a novel authoring approach for actuated tangi-
ble user interfaces (A-TUIs) based on shape-aware generative
authoring, which combines shape-based direct manipulation
and speech input to convey intent for generative actuation.

• We present a proof-of-concept authoring tool that integrates
a multi-robot platform (Toio) with a multi-agent LLM archi-
tecture, demonstrating the feasibility of shape-aware gener-
ative authoring.

• We report findings from a user study (𝑛 = 11) demonstrating
the unique strengths of our authoring approach, as well as
the current limitations and areas for improvement of the
developed system.

2 RELATEDWORK
Shape n’ Swarm builds upon prior works in (1) (Tangible) Authoring
of A-TUIs and SUIs, (2) Multi-modal Authoring Tools, and (3) LLM-
based Systems for A-TUIs and SUIs.

2.1 (Tangible) Authoring of A-TUIs and SUIs
To incorporate dynamic actuation into static TUIs [24], A-TUI
research [47] has investigated shape-changing hardware, taking
form factors including pin-based shape displays [15, 20, 59], shape-
changing lines [39, 40], space-distributed mobile robots [31, 75],
morphing sheets [46, 55], and pneumatic devices [18, 71]. Researchers
have sought to enable intuitive user control over the actuation of
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these hardware systems through various interaction modalities,
without requiring users to have programming skills. Such examples
include specialized GUI software [7, 25, 73, 75], hand or body-based
gestures [2, 13, 28, 43, 75], sketching [12, 27], or direct tangible
interaction [2, 16, 43, 51, 61].

Particularly, researchers have explored direct tangible interac-
tion, or shaping, as an intuitive method for users to convey their
intent for actuation. One such approach is ‘kinetic memory’ pre-
sented in Topobo [51], which allows users, even children, to ‘record
and play’ motions to make tangibly-defined locomotive or expres-
sive movements. Researchers have applied this ‘record-and-play’
hands-on approach to instruct movements for pin-based shape
displays [43], plush toys [61], and tabletop robots [16]. Moreover,
past studies have leveraged the affordance of a group of tangible
blocks, enabling users to construct custom geometries through ar-
rangement or assembly [22, 31, 32, 35]. This research highlights the
intuitive nature of shaping as a user input modality. Specifically,
shaping allows users to rapidly experiment while lowering the bar-
rier of entry [51]. Our research seeks to harness these advantages
explored in prior works.

While our approach similarly focuses on direct tangible ma-
nipulation and constructive assembly, we extend it by integrating
speech-based instructions and LLMs. By utilizing LLMs to interpret
user-manipulated shapes and speech to generate actuation, our
approach incorporates adaptive intent-interpretation in contrast
to ‘record and play,’ offering generative actuation behavior while
preserving the affordance of tangible manipulation.

Further, Shape n’ Swarm builds on prior research for author-
ing Swarm User Interfaces (SUIs). A subclass of A-TUIs, SUIs [31]
capitalize on the reconfigurability of tabletop multi-robot systems,
typically equipped with few wheels, to enable physical display and
interaction. (In contrast to the term ‘swarm robots‘, SUIs refer to
multi-robot systems more broadly, without necessitating decentral-
ized control). SUIs have been proposed for diverse applications in
haptic design [29], constructive assembly [76], display with story-
telling [10], shape-changing capabilities [64], and reconfigurable
physical environments [41, 42, 75]. Researchers are actively explor-
ing authoring methods for intuitive control over tabletop robot
clusters, including AR-based sketching [27, 62], gesture control
[28], and object-oriented, pre-scripted multi-modal control [68].
While a few recent papers presented the usage of LLMs for genera-
tive interactions with SUIs [19, 70, 77] (Section 2.3), our approach
employs the affordance of SUIs, allowing users to flexibly arrange
robots on 2D tabletop surfaces.

2.2 Multi-modal Authoring Tools
HCI researchers have sought to integrate speech with input modal-
ities like gesture and touch for authoring digital systems or media
[3, 30, 54]. For example, in DrawTalking, Rosenberg et al. [54]
incorporate hand-drawing with speech to allow users to flexibly
author animations. These approaches leverage the affordance of
other input modalities (e.g., touch, gesture, drawing) combined
with speech instruction, allowing for more intuitive authoring than
speech alone. In contrast to our approach, where users generatively
author new movements and interactions, DrawTalking mapped
pre-programmed movement patterns tied to keywords.

Recently, to expand the flexibility of natural language (speech
and text) as an approach to authoring digital systems and content,
researchers have explored using LLMs to generatively respond to
natural language inputs. LLMs have demonstrated potential in in-
terpreting text-based user intent to advance tools for creating and
authoring digital content [4, 37, 38], reducing the need for program-
ming experience. For example, LLM-based systems have used user
natural language prompts for creative coding in 2D digital art [1],
sketching interactive storylines [5], enabling keyframe animation
workflows [65], and creating and manipulating objects in virtual
reality [9]. In this space, we observe the utilization of LLM-chaining
and script generation [1, 9, 38, 48] to generatively translate user
speech or text instructions into digital content, informing our ap-
proach.

Recent research in AI and HCI has sought to provide multimodal
inputs to LLM systems beyond natural language [14, 21, 57, 67],
merging research in multimodal digital authoring and LLM-based
authoring tools. These approaches include the interpretation of
mouse inputs [21], vision [14], and tangible interaction with robotic
arms [67]. As part of our contributions, we explore how LLMs
can interpret user manipulation of an A-TUI’s shape, particularly
tabletop robots, as another form of multimodal input to LLMs.

2.3 LLM-based Systems for A-TUIs and SUIs
Further, we build on prior research on applying LLMs to A-TUIs
and SUIs. A closely related work to our approach is SHAPE-IT [48],
which applies LLM tools to A-TUIs by enabling text-to-shape gen-
erative authoring on a pin-based shape display. It employs LLM-
chaining with multiple agents to generate scripts that control the
actuated hardware. In contrast to pure user-typed text input, we
make the advancement of incorporating shape-based tangible ma-
nipulation as a means for users to author the behavior of A-TUIs.

In the context of swarm robotics and SUIs, researchers are in-
creasingly incorporating LLMs for flexible authoring and control
methods. Recent research in swarm robotics has sought to enable
natural language as a method to coordinate multi-unit swarms [26,
36, 60]. Similarly, in SUI research, researchers have explored speech
to generatively authormotion and interaction for tabletop robots [70],
including tabletop games [19]. TangibleNegotiation [77] combines
speechwith robot arrangement to generate images for art education,
using simple motion for tangible feedback rather than shape-aware
actuation. In contrast, utilizing LLM agents to interpret user ar-
rangements of robots for generative actuation has yet to be explored,
advancing research at the intersection of LLMs and SUIs.

Notably, our overarching idea of combining shape and speech
for authoring does not center on the usage of LLMs. Rather, our
LLM architecture enables our specific implementation, with the
intent of proving the feasibility of our broader authoring method.

3 CONCEPT AND AUTHORINGWORKFLOW
This section introduces an alternative approach to authoring swarm
user interface. Instead of writing code to define robot positions,
behaviors, and interactions, users physically arrange robots and
describe their intentions aloud. We describe this approach as shape-
aware generative authoring, a tangible and conversational authoring
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framework designed to support embodied, incremental authoring
of behaviors.

To illustrate this workflow (Figure 3), we walk through a hypo-
thetical interaction between a young child and the Shape n’ Swarm
authoring tool. This narrative surfaces key authoring steps for the
user and the underlying, behind-the-scenes system architecture
and behavior, highlighting how different LLM agents collaborate
to enable each step.

Figure 3: A child authors SUI behaviors using Shape n’ Swarm.
The child intuitively arranges robots into a dog shape. They
animate the dog, make the tail wag when it is pressed, and
designate a separate robot as a joystick. The joystick is used
to move the dog formation and the animation is altered to
make it slower, demonstrating tangible and verbal authoring
without code.

3.1 Walkthrough
A child user approaches a table filled with small robots and begins
to play. They arrange the robots into a familiar silhouette – a few
at the front for the head, two sets of two for legs, a longer segment
for the body, and one at the back for a tail.

Step 1: Defining the Configuration. While the system can
sense the spatial arrangement of robots, it does not yet know what
they represent for the user. The child announces, “It’s a dog!”.

System Behavior - The Prompt Helper Agent transcribes and refor-
mats this speech and forwards it to the Manipulation Interpretation
Agent, which combines the verbal description with the physical
layout to label different robot groupings (e.g. head, legs, tail). These
semantic labels enable meaningful behavior to be layered onto the
formation.

Step 2: Creating Animation. The child says, “Now make the
dog walk!”

System Behavior - This instruction is handled by the Animation
Agent, which draws on the semantic structure established in Step 1.
Recognizing that the request applies to the entire dog formation,
the agent generatively defines a “walk” behavior and tailors it to the
identified parts of the configuration – coordinating leg movement,
body oscillation, and slight head bobbing. The animation script is
then distributed across the relevant robots, bringing the dog to life
with a rhythmic, synchronized gait.

Step 3: Creating Discrete Interaction. The child claps in de-
light. Next, wanting to directly interact with the dog, the child taps
the robot at the tail and says, “When I press here, the tail should
wag.”

System Behavior - This is interpreted by the Button-trigger In-
teraction Agent, which identifies the pressed robot as a physical
input and links it to the “tail” group. The agent generates a script
that triggers a wagging motion in response to touch. The system
binds this script to the designated robot, enabling playful, embodied,
in-situ interactivity.

Step 4: Creating Continuous Interaction. The child then
picks up another robot and places it beside the dog. Pointing to it,
they say, “This is a joystick. I want to drive the dog around!”

System Behavior - Here, the Input-mapping Interaction Agent
takes over. It recognizes that the user intends to use this newly
designated robot as a continuous control input. Based on previous
grouping data and the current prompt, it establishes a real-time
mapping: movement of the joystick robot now controls the posi-
tion of the entire dog formation. As the child pushes the joystick
robot around the table, the dog-shaped group of robots follows
accordingly, simulating locomotion.

Step 5: Refining Behavior. The child, noticing the dog is walk-
ing too quickly, follows up: “Make it walk slower.”

System Behavior - The Prompt Helper Agent maintains the context
of previous interactions and routes this refinement to theAnimation
Agent, which adjusts the gait parameters of the walking script. The
dog now trots more slowly, responding to the child’s preferences
in real time.

3.2 Reframing Swarm User Interface Authoring
This hands-on, shape-aware authoring process transforms SUI be-
havior design into a tangible, iterative, and expressive activity. In-
stead of writing code, they physically compose robot layouts and
describe behaviors in natural language. The multi-agent LLM archi-
tecture supports this fluid interaction with dedicated agents tailored
to different interaction goals – spatial interpretation, animation,
event binding, continuous input mapping, and prompt refinement.
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Figure 4: System Diagram: (A) Tabletop interaction between user and robots (B) Manipulation Instance Status (C) Architected
LLM Agents (D) Pre-prompted APIs (E) Status Display UI

While we have illustrated this through the lens of a child creating
a robotic pet using tabletop robots, the same framework enables
broader use cases. For instance, an educator can set up a classroom
demonstration on traffic management by arranging robots into an
intersection and describing behaviors like, “Make cars stop when
the light turns red.” The system interprets the layout and verbal
instructions, allowing for rapid prototyping and real-time iteration.

By enabling embodied interaction and incremental design, Shape
n’ Swarm makes SUI programming accessible to novices and ex-
perts alike, encouraging playful experimentation and more intuitive
expressions of intent.

4 IMPLEMENTATION
As shown in Figure 4, Shape n’ Swarm’s implementation lever-
ages a multi-agent LLM architecture, custom APIs, toio robots, and
a frontend display to allow users to author SUIs through shape-
based tangible manipulation and speech. This section details the
technical implementation of Shape n’ Swarm, including hardware
components, software architecture, and user interface design.

4.1 Backend System
As shown in our system diagram (Figure 4 C), we developed a sys-
tem featuring five LLM agents built on GPT-4o[45], a Robot Control
API, and an Input API to handle each user request. We used prompt
engineering strategies to maximize each LLM agent’s accuracy, cho-
sen based on their demonstrated effectiveness in improving LLM
tasks:

(1) Rule-based Prompting: Each LLM agent is instructed with a
clear input and output format and custom rules for gener-
ating its output. The movement LLM Agents are prompted
with a clear description of the Robot Control API and Input
API.

(2) Guided Reasoning: Each LLM agent is provided with de-
tailed step-by-step instructions to reason through each user
prompt.

(3) Example-driven Prompting: Each LLM agent is provided a
diverse range of examples (>10) featuring the initial infor-
mation and final output.

(4) LLM-Chaining: Each speech instruction is filtered through
the Prompt Helper Agent to clarify and format the instruc-
tions into sub-prompts. Further, generated movement scripts
are built upon the manipulation interpretation for ‘shape-
aware’ actuation.

4.1.1 LLM Agents. When designing our system, we identified sub-
challenges based on the authoring workflow established in Section
3. For each sub-challenge, we architected dedicated LLM agents
connected via LLM-chaining [48]. These agents are prompted such
that generated motion or interaction reflects a thematic understand-
ing of the user-manipulated shapes and the user’s intent conveyed
through speech. Additionally, each agent incorporates the history
of prior user inputs and system outputs to allow users to make quick
adjustments through speech. This approach allows users to make
quick, follow-up alteration prompts to iterate upon specific anima-
tions or interactions. Below, we outline the role, implementation,
input, and output of each LLM agent.
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(1) Prompt Helper Agent. To be friendly to novice users, the
Prompt Helper Agent processes diverse, conversational speech
instructions and determines the intent behind the instructions (in-
terpret shape, author animation, author button-trigger interaction,
author input-mapping interaction, or follow-up to previous instruc-
tion). In our system, the user speaks into a microphone to give
speech instructions, which are transcribed using the open-source
OpenAI Whisper API (whisper-1 model [50]). The Prompt Helper
Agent serves as a prompt preprocessor, filtering speech prompts to
ensure grammatical clarity.

• Input: Transcribed speech instructions from the user.
• Output: Formatted string instructing the system on which
LLM agents to activate (one or multiple in sequence), con-
taining sub-prompts for each activated LLM agent based on
the initial instructions.

(2) Manipulation Interpretatation Agent. The Manipulation In-
terpretation Agent builds an understanding of the user-manipulated
shape formed by the robots, handling both brief descriptions (one
to two-word names) and long descriptions identifying specific parts.
This agent identifies key groups composing the overall shape (e.g.
the body parts of a stick figure) and sorts the robots into these
groups. Manipulation interpretation always precedes any anima-
tion or interaction.

• Input: Formatted prompt from the Prompt Helper Agent
containing (1) the robot positions and (2) the user’s descrip-
tion of the manipulated shape.

• Output: A labeled thematic grouping of the robots (Figure 4
B), which we define as a manipulation interpretation.

• Post-processing:The thematic grouping is displayed through
each robot’s LED-indicator and the front-end display, for user
review and adjustment.

(3) Animation Agent. The Animation Agent enables users to
author motion and animation, handling both simple movement
requests (e.g. move in a straight line) and abstract, complex requests
(e.g. dance happily). This agent determines if, when, and how to
actuate the robots given their status defined by the manipulation
interpretation, writing a Python script that calls the Robot Control
API 4.1.2.

• Input: Formatted prompt from Prompt Helper Agent con-
taining (1) the manipulation interpretation, (2) robot posi-
tions, and (3) user instructions for an animation.

• Output: Python animation script that coordinates the mo-
tion of robots using the Robot Control API.

• Post-processing: The system executes the Python script as
a separate thread. Each function call made by the Python
script outputs a set of target positions for the robots, which
is sent to the robots via Bluetooth in real-time.

(4) Button-trigger Interaction Agent. The Button-trigger Inter-
action Agent enables users to create tangible interactions by linking
simple or complex movements to button presses of one or more
robots. Based on the manipulation interpretation, this agent identi-
fies which robots should act as inputs and which robots to actuate
and scripts the motion of the output robots.

• Input: Formatted prompt from the Prompt Helper Agent
containing (1) the manipulation interpretation, (2) user in-
structions for the button-trigger interaction, (3) robot posi-
tions, and (4) button-selected robots.

• Output: Python script that defines the output animation or
motion, and an input-to-output relationship.

• Post-processing: The system calls the Input API to map the
selected robot(s) as button trigger(s) for the generated script,
such that whenever the input robot is pressed, a new thread
runs the movement script.

(5) Input-mapping Interaction Agent. The Input-mapping In-
teraction Agent allows users to define the movement of robots
correlated to granular updates to an input robot’s position and
orientation, which gives users real-time fine motion control over
the robots. In contrast to script generation, this agent interprets the
manipulation interpretation and user prompt to determine input
robots, output robots, and the nature of the I/O relationship.

• Input: Formatted prompt from the Prompt Helper Agent fea-
turing (1) themanipulation interpretation, (2) robot positions,
and (3) user instructions for the input-mapping interaction,
and (4) button-selected robots.

• Output: Formatted string featuring (1) input type (joystick,
slider, or knob), (2) output motion (translate, rescale, or ro-
tate), (3) the parameters scaling the input-to-output relation-
ship from the prompt, and (4) output robots.

• Post-processing: The Input API detects live position up-
dates from the input robot. When the Input API detects an
update, the system automatically calculates target positions
for the output robots in real-time.

4.1.2 Robot Control API. We developed a Robot Control API to
facilitate LLM agent control over actuation, defining movement
functions that output real-time robot target positions (Figure 4 D).
Four primitive movement functions control movement: translate,
rotate, rescale, and reposition (Figure 4 D). The first three move a
group of robots based on parameters (translate: x, y; rotate: angle;
rescale: scale). Multiple group-based function calls can be made con-
currently, allowing for complex movements. In contrast, reposition
generates a set of target positions for every robot, enabling more
detailed control over movement. Every movement call includes a
movement speed parameter, set by the LLM agent based on user
instructions. We prompt each movement LLM agent with detailed
instructions on each movement function and diverse examples. To
generate actuation, movement LLM agents generate scripts that
make function calls to the Robot Control API.

4.1.3 Input API. We also developed an Input API that uses indi-
vidual robots as one of four input types: button, knob, slider, or
joystick (Figure 4 D). The Interaction Agents call the Input API to
initialize the input robot. The Interaction Agents set parameters
for the input type, the output robot(s), and the output movement,
generating an input instance, which will continuously detect the
specified tangible input until it is reset.

4.2 Toio Robots
We use toio robots, 2.85 × 2.85𝑐𝑚 cube-shaped units that navigate
independently across gridded mats. Each robot is equipped with a
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downward-facing scanner for real-time position tracking, a built-in
button for selecting robots and triggering interactions, a multi-color
LED indicator for displaying group status, and a built-in speaker
for notifying the user of group and selection status changes.

As shown in Figure 4 A, each robot is connected to the system via
Bluetooth. While up to 12 toio robots can directly connect to a com-
puter via Bluetooth, we utilize multiple Adafruit Feather Bluetooth
bridges to establish a Bluetooth connection with up to 50 robots.
The Processing program tracks each robot’s status and position and
relays motion commands to the robots. The Processing program
is connected via an Open Sound Control (OSC) server to the main
Python program. The main Python program exchanges live status,
positions, and target positions with the Processing program.

Figure 5: Frontend Display: showing amanipulation instance
of a circle and two buttons. The left button is mapped to be a
joystick to control the circle, and the right button is mapped
to be a slider to control the circle.

4.3 Frontend System
As shown in Figure 4 E, we use a React web application to display
1) the robot state (positions, grouping, interaction mapping), 2) a
log of user inputs and system responses, and 3) the system status
(waiting for instructions or currently processing request). The React
web application communicates with the main Python program via
a Flask server. Optionally, the user can interact with a simulated
version of Shape n’ Swarm directly through the frontend display
through mouse drag and click inputs.

5 TECHNICAL EVALUATION
We performed a technical evaluation to determine the best LLM
model and assess the performance and scalability of our system.

5.1 Test Cases
. To gather test cases, we simulated the system in a virtual environ-
ment and recorded every request made to the system throughout
our user study.

Success Criteria for Test Cases. Our technical evaluation
checks for significant errors rather than the subjective quality of
each output. While the user study goes further into the quality of

outputs, our test cases provide a baseline understanding of how
often the system returns a valid, compilable output.

• Prompt Helper: The test case is deemed a success if the
Prompt Helper Agent returns a string that matches the re-
quested format and each action call in the string is valid.

• Manipulation Interpretation: The test case is successful if (1)
all robots are assigned to a group, (2) no robots are assigned
to multiple groups, (3) no non-existent robot is assigned to a
group, and (4) the output follows correct formatting.

• Animation: The test case attempts to compile and run the
entire output script, checking whether each command is a
valid Robot Control API function call.

• Button-trigger Interaction: The test case follows the same
approach as the Animation test cases. Additionally, the test
case only passes if the mapped input and output robots exist
and the string describing the mapping is properly formatted.

• Input Mapping Interaction: The test cases check whether
the input and output robots exist and form disjoint sets, and
that the I/O relationship is valid (joystick, slider, or knob, as
in Section 4.1.3).

5.2 Model Comparison and Evaluation
To determine the best LLMmodel for Shape n’ Swarm, we evaluated
LLM models for commercial and research applications (GPT-4o,
Claude-3.7-Sonnet, and Llama-3.3-70b) on both speed and success
rate. We the Prompt Helper Agent, Manipulation Interpretation
Agent, Animation Agent, Button-trigger Interaction Agent, and
Input-mapping Interaction Agent with each of the three candidate
LLM models. For each agent, we randomly selected 20 participant
requests from the user study, resulting in a total of 100 test cases.

As shown in Figure 11, GPT-4o demonstrated the fastest mean
load time across all tasks. Further, GPT-4o had the strongest perfor-
mance with passing test cases, illustrated in Appendix A. Based on
this comparison, GPT-4o offered the best trade-off between speed
and success rate.

5.3 System Scalability
To evaluate our system’s scalability, we measured how the success
rate and load time were affected as the number of robots increased.
We hand-created 10 arrangements with 10, 20, 30, and 40 robots,
mirroring the prompts and designs found in the user study, forming
40 unique arrangements. We ran sample prompts corresponding to
each arrangement through the Manipulation Interpretation Agent
and Animation Agent, measuring performance with the test cases.
Example arrangements and output animations with 30 and 40 robots
are included in Appendix B.

As Figure 6 shows, the system performs best with 10 robots, with
a mean success rate of 97.5%. With 20 robots, the system maintains
a mean accuracy of 87. 5% with a mean load time of 1.71 seconds.
However, large swarms require further optimization to maintain
a high success rate and low response times, as both metrics show
noticeable degradation. Such limitations are further addressed in
Section 7.2.2.



UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Jeung, et al.

Figure 6: System Scalability: Test case success rate and mean
load time at varying robot counts.

6 USER STUDY
Apart from gauging the overall user experience with our authoring
method, our user study focused on two core objectives: (1) evaluat-
ing the quality and characteristics of system-generated responses
to freeform user inputs, and (2) understanding how participants
engaged with the shape-aware generative authoring process, in-
cluding the creations they attempted. Centered on these objectives,
we designed two open-ended tasks: (Task 1) create any animated
outcome, and (Task 2) move the target object by authoring an in-
teraction, allowing us to observe a wide range of interactions and
behaviors across participants. These findings surface key opportu-
nities and limitations of the authoring method, which we discuss
in detail in a later section.

6.1 Procedure
Participants and General Procedure: We recruited 11 partici-
pants through university social media channels and screened par-
ticipants to ensure diverse self-rated coding experience levels (6
high, 2 medium, 3 low). Our study was approved by our university’s
Institutional Review Board (IRB) (IRB24-1325). Each study session
took approximately 30 minutes to complete. The user evaluation
involved a preliminary onboarding task (Task 0) and two primary
tasks (Tasks 1 & 2). In Tasks 1 and 2, we asked participants to “think
out loud” by communicating their ideas for creation and reactions
as they interacted with the system.

Task 0: This onboarding task familiarized participants with
the system. Using a user manual, participants followed step-by-
step instructions to build and animate a stick figure and create
interactions by linking it to a button. They then constructed a
rectangle and experimented with different controls (knob, slider,
joystick). Finally, participants reset the system and had 3 minutes
for free exploration.

Task 1: Participantswere asked to design an expressive, practical,
or educational application using the system. The application had
to meet three requirements: 1) use all 11 robots, 2) include one
animation, and 3) feature two interactions with the swarm. The user
manual was available for reference during the task. The primary
goal of this task is to allow users to create open-ended applications

using shape-aware generative authoring. We aim to extract the
nature of the applications (Section 6.2) that participants attempt,
learning how the system supports or undermines their intent. The
three requirements are only intended to encourage the participants
to attempt complex applications that justify the use of our system.

Task 2: This task required participants to create a system that
rotates a provided L-shaped block without directly touching the
block or placing robots directly adjacent to the block at the onset.
The primary goal of this task is to assess the system’s flexibility in
supporting diverse approaches for problem solving. Shape-aware
generative authoring enables participants to employ creative, non-
prescribed methods – using direct manipulation and voice com-
mands – to rotate an L-shaped block in various ways, tailored to
their unique strategies and context. We discuss these diverse ap-
proaches in Section 6.2 and the system’s strengths and weaknesses
in supporting them.

Post-study: After the tasks were completed, participants filled
out a Likert-scale questionnaire (Figure 9) and participated in a semi-
structured interview to describe their reactions and impressions
of the system. The interview allows us to capture a qualitative
understanding of how participants experienced our shape-aware
generative authoring method.

6.2 Results - Overall Task Outcomes
In this section, we describe (1) the types of creations in Tasks 1
and 2, illuminating potential applications of our authoring method,
and (2) the primary challenges users encountered. Table 1 lists all
creation attempts and our analysis of the system output results,
which are detailed below.

6.2.1 Approaches to Task 1. In Figure 7, we detail several creations
that the participants made during Task 1 of the user study.

Task 1 demonstrates the expansive potential for actuation and
interaction with SUIs made possible through shape-aware genera-
tive authoring. In under 15 minutes, participants authored diverse
creations, as shown in Figure 7. Many participants tended towards
creations that could be considered artistic or playful, focusing on
entertainment or expressive value. For instance, P7’s giraffe was
authored to nod its head and walk, while P2’s skater and half-pipe
(Figure 7) showed a skater riding the half-pipe. Educational ele-
ments emerged in P4’s two lines, which performed addition and
merged the two lines, serving as an interactive tool for understand-
ing mathematical concepts. P9’s number display aimed to allow
users to increment and decrement numbers. Practical elements
were evident in designs such as P5’s excavator, which attempted
to showcase the functionality of a real-world machine and allowed
users to explore mechanical principles through interactive control.
Overall, participants rapidly learned the authoring process, produc-
ing diverse creations highlighting the flexibility of our authoring
method.

6.2.2 Approaches to Task 2. Figure 8 illustrates several participant
approaches to Task 2 of the user study.

Participants took diverse approaches to achieve Task 2, where
they were asked to rotate an L-shaped block without directly touch-
ing the block or placing robots next to it. In under ten minutes,
participants authored varied designs to accomplish this moderately
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not move
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Animation Prompt
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“Make the skater ride the 
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“Control the skater with this 
joystick”

“Expand the flower when I press 
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dig” “Move its head up and down”
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“Move up and and down with this 
slider”

User-Manipulated

Shape

Manipulation 
Interpretation

Generated

Animation

Interaction Prompt

Generated

Interaction

Figure 7: Examples of Task 1 creations (left to right): Line to demonstrate sine curve (P1), skater and half-pipe (P2), flower (P3),
excavator (P5), and giraffe (P7)

.

complex task. P3 and P5 created a grabbing mechanism to simulate
a claw-like structure to move the block. P6 relied on two pushers to
turn the block and also apply force to move it. P9 introduced a more
complex design with a “pivot point pusher”, where one robot served
as a stationary pivot while another pushed the block, leveraging
rotational movement. These varied strategies reflect the potential
of our authoring method to enable problem-solving.

6.2.3 Authoring Challenges. Based on user feedback and our ob-
servations of the system, we subjectively identified three patterns
of challenges that users encountered in the authoring process, as
color-coded in Table 1. These three challenges included: grouping
errors, movement inaccuracies, and understanding gaps. These three
errors impacted participants’ ability to successfully engage with
the system and complete their tasks, as detailed in the following
sections.

Grouping Errors. Participants faced challenges due to grouping
errors that impacted their ability to perform tasks effectively. For
example, P2 struggled when the joystick button was incorrectly
grouped as part of the half-pipe. This misinterpretation resulted
in no response when the joystick was moved, discouraging P2
from further interactions. Similarly, P10 attempted to create a box
and L-shaped pusher but faced errors when the system grouped
inputs as part of the shapes, causing a malfunction and leading to
abandonment of the task. These grouping errors highlight the need

for the system to interpret user input more accurately and provide
more robust options to adjust groupings when necessary, which is
further discussed in Section 7.2.1.

Movement Inaccuracies. Participants encountered issues with
precision, unintended movements, and incomplete executions in
Task 1. P8 attempted to flank an opposing army line, but the robots
only moved partway to position themselves behind the opposing
army, capturing the general intent, but rendering the interaction
incomplete. P9 experienced problems with shape transformation;
their effort to reconfigure a “1” into a “2” resulted in vaguely recog-
nizable, but distorted and collision-prone animations. These move-
ment inaccuracies further underscore the issues of LLM reliability
and readability, discussed further in Section 7.2.1.

‘Understanding’ Gap. During task 2, participants encountered
a few challenges in controlling the mechanism they designed to
manipulate the L-shaped block (Figure 8). Although the participants
were technically successful, there was a gap between the partici-
pants’ understanding of the input controls (knobs/sliders/joysticks).
For example, P2 used an L-shaped pusher that could only nudge
the block slightly because they mapped a discrete button input to
the movement instead of a continuous knob, resulting in choppy
movements. While some of these issues can be solved by improving
the GUI and providing guidance to users, these challenges across
participants echo the question – how do we communicate input
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P3 P4

reprompted

P6 P9

Figure 8: Examples of Task 2 strategies (left to right): grab-
ber design (P3), L-shaped pusher (P4), two pushers (P6), and
pusher and pivot (P9)

affordances of interactions authored by the user through our ap-
proach? This is discussed further in Section 7.3.3.

6.3 Participant Reactions to the Authoring
Experience

We aimed to identify recurring patterns in (1) participant engage-
ment with our authoring process and (2) system output quality
through collecting post-study surveys and interviews. The follow-
ing summarizes the key themes from participant feedback.

6.3.1 Survey Results. The survey reveals that participants felt that
both modes of input, tangible shaping and speech, contributed
to their control, though their impressions varied across different
steps of the authoring process. Figure 9 illustrates participants’
Likert scale responses following the study. Users reported that
both hand-arranging the robots and using speech contributed to
their sense of control, as reflected in the average ratings (AR) for
Q1 and Q2: 6.1 and 5.8 out of 7, respectively. While these inputs
were generally perceived as empowering, users expressed mixed
reactions to different stages of the authoring process. Participants
hadmixed opinions about the system’s ability to interpret and group
their manipulated shapes (Q3 AR: 4.2). In contrast, users generally
felt more positive about authoring animations and interactions
(Q4 AR: 5.3 and Q5 AR: 5.5). Further, users generally felt that the
system understood their intent (Q6 AR: 5.4). Finally, users showed
positive to neutral results about whether the system enables easy
transference of ideas (Q7 AR: 4.8). To further unpack these survey
findings, we identify key trends in interview responses.

6.3.2 Shape Implies Functionality. Participants expressed that the
ability to manipulate the arrangement of robots enhanced their
control over robot behavior. Interestingly, the survey showed that
users considered arranging the robots to be the more important
control method compared to speech (Figure 9). Users observed
that forming the shape of the robots helped implicitly define their
functionality. P5 notes, “It felt like there was a connection between
what I placed and what kind of functionality would be expected
from it,” while P6 observed that hand-arranging “seemed to be the
most intuitive way to control the robots.” Participants noted that
the authoring tool was user-friendly to learn, echoed by P10, who
found the tangible manipulation “very easy to learn,’ and P6, who
described tangible manipulation as a “direct transference of ideas.”
These comments help confirm our initial hypothesis that tangible
shaping can be used to convey intent for actuation, as outlined in
Section 1.

Q7: Overall the system can help me 
easily transfer my ideas to reality

Q6: The system understood the 
intent of my prompts

Q3: The system's interpretation of 
my arrangement aligned with my 
expectations

Q4: The system's generated 
animations aligned with my 
expectations

Q5: The system's generated 
interactions aligned with my 
expectations

Q2: Speech instructions 
contributed to my control over the 
system

Q1: Arranging the robots using my 
hands contributed to my control 
over the system
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Figure 9: Post user evaluation questionnaire results.

6.3.3 Impact of LLMs: Magical When it Works, Frustrating When
it Doesn’t. The interplay between the speculative potential and
the inherent opaqueness of LLM-based systems created a duality
of experiences for participants, oscillating between moments of
awe and frustration. Many participants marveled at the system’s
ability to intuitively interpret and execute complex commands. For
example, P2 was “blown away” by the system’s flawless execution
of a challenging task on the first attempt, describing the system
as “close to magic.” However, this magic came with its own set
of challenges, as discussed in Section 6.2.3. These missteps were
exacerbated by the lack of transparency in black-box LLMs, mak-
ing debugging more difficult. Particularly, our post-study survey
illuminated the need for further transparency and user agency for
the manipulation interpretation step. While our system’s nature
often delighted users, its opaqueness posed barriers to consistent
and controllable interaction, a tension that will be explored further
in Section 7.2.1.

6.3.4 Thinking through Shaping. The open-ended nature of gen-
erative authoring and the absence of clear constraints can make it
challenging to settle on a specific direction. In Tasks 1 and 2, we
often observed participants idly re-arranging the robots at random
until arriving at an idea to pursue, as if brainstorming through
manipulations to spark inspiration (which could be referred to as
hand-storming). Hand-shaping the robots helped participants think
through tasks and refine their thoughts into specific ideas. P3 ob-
served, “once you put it onto a physical medium, then it actually
makes more sense.” Similarly, P11 mentioned that the hand ma-
nipulation “helped me visualize a lot better.” The ability to quickly
hand-adjust designs helped fuel ideation and iteration, as P11 noted,
“I could easily change my designs as soon as I had moved the robots”
and P7 reflected, “You could let your imagination go and rearrange
it however you want to a very high capability.” These observations
provide unique insight into how tangible interaction can assist user
ideation when working with LLMs. Recent research in Human-AI
Interaction has explored LLM-based systems that nudge users to
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Table 1: A summary of results from both tasks of the user evaluation. Black indicates task completion without encountering
major challenges (defined in 6.2). Light Blue indicates a movement inaccuracy (defined in 6.2.3). Purple indicates a grouping
error (defined in 6.2.3). Orange indicates an understanding gap (defined in 6.2.3). Yellow indicates that the participant did not
attempt the task.

Task 1 Task 2

Creation Animation Interaction 1 Interaction 2 Strategy

P1 Line Sine wave Standing wave Move up/down U-shaped pusher

P2 Skater, Half-Pipe, & Button Ride half-pipe Move w/ button No Attempt L-shaped pusher

Smiley face Change expression

P3 Flower Swaying Expand flower Contract flower Grabber

P4 Two lines Addition Move left Move right L-shaped pusher

P5 Excavator Move & dig Move boom up&
down

Drive forwards Tongs

P6 Tree Leaves shaking Cut tree in half Move up Two pushers

P7 Giraffe Move its head Walk forwards Walk backwards Reverse L-shaped pusher

P8 Two lines of soldiers Attack each other Flank line No Attempt Two-line pusher

P9 Number display w/ buttons Change 1 to 2 Increment No Attempt Pivot point & pusher

P10 Square, triangle & 2 buttons Rotate square Rescale square Rotate triangle
w/ knob

Box & L-shaped pusher

P11 Stick figure & basketball Jump for ball Jumping jack No Attempt Two-line pusher

Two racers & a finish line Race to finish

think critically [8, 66]. We speculate that the intersection of tangi-
ble shaping and AI-augmented ideation may have potential in this
realm and should be explored in future work.

7 DISCUSSION, LIMITATIONS, AND FUTURE
WORK

In this paper, we introduced shape-aware generative authoring,
showcasing the method’s potential through the proof-of-concept
Shape n’ Swarm authoring tool. The user study showcased path-
ways to exciting future applications, but also the need to address
LLM and hardware-related limitations through further work.

7.1 Potential Application Spaces
The user study highlighted the unique strengths of our authoring
method, including rapid customizability and embodied interaction,
enabling both creative and functional applications with SUIs. Al-
though this section focuses on tabletop robots, we believe the un-
derlying concepts are broadly applicable to other A-TUI hardware
platforms.

7.1.1 Education. As a flexible, embodied learning tool, our ap-
proach merges generative authoring with building blocks, a famil-
iar mode of play for children (Figure 10 A). For example, P10 in
our user study defined a triangle, square, and L-shape, showing
geometric and alphabet learning opportunities. Children can de-
velop their understanding of the world by building recently learned
concepts and asking their creation to behave as it would in real
life. Previous researchers [77] have observed that the tangibility of

tabletop modular robots and the flexibility of LLMs pair well for
interaction with children.

7.1.2 Environment Manipulation. With shaping, users can form ge-
ometries to fit unique tasks, then use speech to rapidly actuate the
arrangement, building on previous research focused on manipulat-
ing the surrounding environment with SUIs [68]. As demonstrated
in Task 2 of the user study (Figure 8), users leveraged the flexibil-
ity to define custom shapes to rotate a moderately complex shape
within minutes of being introduced to the system. As shown in
Figure 10 B, we believe that the ability to manipulate the robots into
complex shapes can provide additional flexibility and motor control
when manipulating the surrounding environment. We envision
various use cases, particularly in accessibility contexts, where the
system could enable individuals to control out-of-reach objects in
a highly customizable way.

7.1.3 Interactive Storytelling. Shaping materials into characters
and telling stories with speech is a natural form of creative play.
Our approach leverages generative actuation to animate these user-
crafted forms, bringing them to life through the user’s voice. As
shown in Figure 10 C, when the user creates multiple figures or
objects simultaneously, they can begin to tell a story about their own
creations [10]. For example, P11 created two racers racing towards a
finish line, and a stick figure playing basketball. P8 created two lines
of soldiers fighting each other, describing their experience as “lots
of fun.” The user can build multiple characters and environments for
those characters, where every component within the story has its
unique behaviors. The user can continuously redefine interactions
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Figure 10: Application space examples (A) Educational geo-
metric building blocks (B) Grabbing a banana with remote
object moving (C) Interactive storytelling with person, house,
and streetlamp.

and generate new animations, allowing the user to tell an evolving,
interactive story.

7.2 Proof-of-Concept Limitations and Design
Recommendations

Our technical evaluation and user study also revealed limitations
in our proof-of-concept authoring tool, which we discuss below.
Further, we identify design recommendations to address these limi-
tations.

7.2.1 Transparency and Determinism of LLMs. Participants in the
study expressed the need for greater LLM reliability and trans-
parency when authoring manipulation interpretations, movement,
and interactions. P9 emphasized the importance of making the sys-
tem “more deterministic [and] reliable in understanding what it’s
doing.” Further, the system often struggled to incorporate follow-up
feedback after its initial response, limiting the specificity of user
control. P11 was “negatively surprised with its adjustments to feed-
back,” noting that the system struggled to incorporate corrections
after initial misinterpretations. Overall, LLM unpredictability and
lack of transparency generated issues in control and reduced user
agency.

Incorporating manual control options for LLM-based systems
remains a promising solution, as echoed by Ben Shneiderman [58].
P10 suggested a manual regrouping feature as a faster and more
detailedmethod to correct the system’s manipulation interpretation,
compared to follow-up speech instructions. Further, the frontend
display could be adjusted to show sliders to control key parameters
of generated animations and interactions, such as movement speed
and size of the movements. Additionally, prompting LLM agents to
include an explanation of their reasoning along with each output
could assist users in determining their follow-up instructions.

7.2.2 Robot-related Scalability and Reliability. Our technical eval-
uation in Section 5 showed that our LLM agents encountered chal-
lenges when scaling beyond 20 robots. One potential solution is
to adaptively swap our example prompts based on the current
number of robots, to optimize response quality when the robot
count increases. Further, working with higher numbers of robots
may significantly change human affordance and general interaction
outcomes, which should be further explored through research. Al-
though our user study supported diverse creations using 11 robots,

optimizing the system when handling larger numbers could unlock
even more complex and varied creations.

We also encountered issues with the robots becoming stuck on
each other when their paths converged. In our user study, collisions
mainly surfaced when users attempted to pack robots together in
their arrangement tightly. As a next step, we hope to further in-
corporate robot collision prevention techniques [33], integrating
automatic path planning with every target position. Further opti-
mization to prevent collisions could yield more reliable animations
and interactions. Finally, while our system uses toio hardware, our
approach can be applied to other tabletop multi-robot systems, as
our architecture uses generic X-Y coordinate inputs and outputs.

7.3 Future Work and Implications for the
General Concept

Shape-aware generative authoring opens up a range of opportuni-
ties for future research. We outlines key directions for expanding
and optimizing this novel authoring approach for A-TUIs.

7.3.1 Shape-Aware Generative Authoring for New Platforms. We
believe our approach of shape-aware generative authoring should
be explored with diverse SUI and A-TUI hardware platforms. We
developed Shape n’ Swarm with the vision of a clay-like, moldable
material responsive to tangible manipulation [17, 23]. Future re-
search should pursue these visions by applying shape-aware gener-
ative authoring to new, tangibly manipulable platforms. Increasing
the granularity and scale to 100 or 1000 robots [56] would improve
shape resolution and enable more complex creations. Additionally,
an implementation with non-tabletop robots capable of navigating
varied surfaces would broaden its applicability. Incorporating our
approach with a swarm of drones [36] would allow for manipula-
tion and actuation in 3D space. Similarly, a 3D constructive block
hardware [53], folding plane-based systems [46, 55], and pneumatic
shape-changing systems [18] would enable flexible manipulation
of three-dimensional forms, moving closer to future visions. While
Shape n’ Swarm demonstrates shape-aware generative authoring
in a tabletop swarm user interface setting, our authoring approach
has much broader applicability to new platforms.

7.3.2 Optimizing Shape Awareness. One key step in the shape-
aware generative authoring process is the system’s manipulation
interpretation, the semantic breakdown of user-manipulated shapes
based on speech instructions. While our proof-of-concept’s usage
of an LLM agent enabled flexible interpretation of user-manipulated
shapes, further optimization of this step could improve the reliabil-
ity of the authoring process. One pathway is to integrate our LLM
agents with knowledge maps [11], which can provide structured
representations of the user’s robot arrangements. Incorporating
computer vision [45, 49] would enable the LLM to make visual
inferences rather than text inferences, potentially improving the
system’s understanding of user-manipulated shapes. Further, ro-
botics and AI research has explored non-LLM techniques to se-
mantically interpret images through semantic segmentation [6]
and the interpretation of natural language with images for robotic
motion planning [44]. Adapting such research streams to interpret
the shape of A-TUIs could improve the accuracy of this step. We
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believe the potential demonstrated by our proof-of-concept justifies
further research into refining the shape-aware authoring approach.

7.3.3 Feedback and Interaction Design for ‘Shape-Aware Generative
Authoring’. Shape-aware generative authoring requires informa-
tion to be communicated to the user throughout the authoring pro-
cess. For example, our proof-of-concept communicated the group-
ing of robots and the user-authored interactions through a screen
display. The best interaction design practices for this authoring
method have yet to be identified. Such practices should maximize
the user agency and the readability of LLM outputs. Future systems
could go screen-less, further emphasizing a non-digital approach
to authoring. For example, groupings and interactions could be
communicated through projected overlays [34], while robots could
be strategically actuated to give haptic feedback. Our user study
identified a few next steps towards these goals, including manual
control options and better signifiers for the affordance of gener-
ated interactions. These techniques would be particularly useful for
editing system outputs, providing intuitive alternatives to simple
follow-up speech instructions. Future work should further inves-
tigate the open research questions of what information to convey
and the most effective communication methods, in the context of
shape-aware generative authoring.

7.3.4 Expanding Multi-modal Interaction to ‘Motion-Aware’ Author-
ing. Shape-aware generative authoring has the potential for input
modalities beyond interpreting static tangible manipulation and
speech. For example, beyond ‘shape-aware’, such a system would
allow for ‘motion-aware’ actuation generation, enabling the inter-
pretation of dynamic changes to the shape to generate actuated
behavior. This approach could be adapted to thematically interpret
hand-recorded, shape-changing motions, on top of static shapes.

7.3.5 User Study with Children. While our user study with adults
revealed the open-ended potential of our approach for creating
animations and interactions, we are particularly interested in ex-
tending this work to children, inspired by our initial vision and
scenario (Figure 3). We have previously exhibited Shape n’ Swarm
in public science fair exhibitions, where many children enjoyed
interacting with the system. Much like constructive assembly toys
such as LEGO, we observed some children getting obsessed with the
system during the exhibition, highlighting the strong potential for
exploring how our approach might support and expand children’s
creative expression. Deploying a long-term qualitative study of our
approach with children would investigate this question.

8 CONCLUSION
This paper presents shape-aware generative authoring, a novel ap-
proach to authoring swarm user interfaces that combines hands-on
shape manipulation and speech to communicate intent for gen-
erative actuation. We created the Shape n’ Swarm authoring tool
as a proof-of-concept for this approach, allowing users to author
animations and interactions with tabletop robots through tangible
manipulation and speech. Our user study showcased this work-
flow’s flexible, intuitive nature and demonstrated the diverse range
of user creations and applications made possible. This paper opens
the novel HCI research space of “shape-aware generative authoring,”

a broadly applicable approach for actuated tangible user interfaces
with exciting opportunities for future exploration.
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A MODEL COMPARISON
Success Rate. We evaluated the success rate of each LLM model
for each LLM agent. Figure 11 presents the success rates for each
model and task, measured by the percentage of successes in 20
trials. Averaging across all tasks, we found that GPT-4o slightly
leads with a mean success rate of 97% with a standard deviation
(SD) of 4.5%, followed by Llama 3.3-70b (95%, SD: 5%) and Claude
3.7 Sonnet (94%, SD: 6.5%).

Load Time. Figure 12 shows the mean and standard deviation
for the load time across 20 test cases, for each LLM agent and LLM
model. GPT-4o demonstrated the fastest mean load time across all
tasks, at 1.14s. Llama-3.1-70b and Claude-3.5-Sonnet trailed further
behind with means of 2.32 and 2.34 seconds. 1 The Animation Agent

1Note that API request load times vary based on factors like the overall server traffic and
proximity to servers, leading to inconsistency in API response time https://platform.

Figure 11: Model comparison by LLM agent test case success
rate. For each bar, the success rate is the percentage of passed
test cases out of 20 trials.

Figure 12: Model comparison by LLM agent mean load time.
Each bar shows themean load time across 20 trials, including
the standard deviation.
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Figure 13: Example animation outputs from the scalability technical evaluation, displayed frame by frame. The top row shows a
tree and butterfly animation, each with 30 robots. The middle and bottom rows show a fighter jet and cave explorer animation,
each with 40 robots.

took the longest out of the five LLM agents, as it is instructed to
generate complex movement scripts. In contrast, the Prompt Helper
and Input-Mapping Interaction Agents were the fastest, as their
prompts instruct them to output short instruction strings.

B SCALABILITY EXAMPLES
We conducted our technical evaluation with 10, 20, 30, and 40 robots
to develop a better understanding of system performance when

scaled beyond the number of robots in our user study, which was
limited to 11 robots. While we noticed degradation in the success
rate (Figure 6), the system succeeded in outputting many anima-
tions, which become more detailed as the robot count increases.
openai.com/docs/guides/rate-limits. Our evaluation provides a general estimate for
load times and is still a valuable comparison tool between LLM agents and models.
We display several example animations with 30 and 40 robots in
Figure 13.
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