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Figure 1: Shape-Kit: a hybrid haptic design toolkit for exploring crafting on-body haptics. (a) Two modules of Shape-Kit. (b)
Hand behavior can be transduced to pin-based shape-change (c) Ad-hoc optical tracking module

Abstract
Driven by the vision of everyday haptics, the HCI community is
advocating for “design touch first” and investigating “how to touch
well.” However, a gap remains between the exploratory nature of
haptic design and technical reproducibility. We present Shape-Kit,
a hybrid design toolkit embodying our “crafting haptics” metaphor.
The Shape-Kit analog tool can transduce and amplify (or minify)
human touch behaviors into dynamic pin-based haptic sensations
through a flexible and long transducer, enabling free-form sensorial
exploration of touch across the body. An ad-hoc tracking module
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captures and digitizes these patterns, while our graphical user in-
terface includes real-time 3D visualization, recording, tuning, and
playback functionalities. To showcase a full design cycle, we built
a programmable shape display for tangible playback. This demon-
stration invites attendees to experience how the analog crafting
method offers an intuitive entry point for collaborative touch pro-
totyping while excelling at uncovering subtle nuances that shape
touch quality and how touch digitization enables touch recording
and playback while enhancing reflective creation.
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1 Introduction
With the maturing of haptic technology, there is a promising vi-
sion of integrating haptic interaction into everyday life, benefiting
critical areas such as healthcare, communication, education, and
accessibility [8, 9, 22, 26]. Toward this vision, and given the rich-
ness of human touch perception and interpretation, the haptic
community in human-computer interaction (HCI) is beginning to
advocate for “design touch first” [11] and emphasizing an investiga-
tion of “how the technology can touch well” [28], moving beyond
technology-dominant development. Approaches like Soma Design
argue for designing haptic experiences center on the designer’s
first-person somatic experiences [6, 7], which requires continu-
ous engagement with the material on the body to judge, iterate,
and validate throughout a design process [1, 25]. These methods
typically employ low-fidelity prototypes or static materials (e.g.,
fabrics) for more visceral sensorial exploration [23, 27], capturing
the qualitative richness of touch but limiting reproducibility. While
many computational haptic design tools enable more reproducible
outcomes, the burden and constraints of technical complexity of-
ten hinder more exploratory experiences for nuances. Thus, a new
design approach that bridges this gap is needed.

Despite the decades of advocacy for multi-sensory interaction,
touch as a design modality remains underutilized by much of the
design community [17, 19, 21]. To foster design exploration in this
domain, we draw inspiration from the evolution of visual design
approaches. Designers have been greatly empowered by digital
drawing platforms: from pixelated and later vector drawing with
a mouse (e.g., Microsoft Paint 1 and Adobe Illustrator 2) to fluid
sketching with stylus pen and tablet (e.g., Procreate on iPad3). How-
ever, the foundation of design education always starts with analog
tools, such as drawing using paper or canvas with paintbrushes.
They are approachable and friendly to novices, and despite their
simplicity, these analog drawing methods offer versatile drawing
features based on experts’ tacit knowledge, which could achieve
the creation of masterpieces. In contrast, existing haptic design
platforms typically consist of hardware haptic devices and software
authoring tools. Most of them involve precise parameter control
through sliders, buttons, line graphs [20, 30], or timelines with drag-
ging blocks [5, 12]. Some platforms use hand sketching on tablets,
translating drawing patterns into actuation sequences [2, 14], while
some employ pressure sensors to track direct touch and replay
it with a haptic interface [10]. However, there is a lack of haptic
design tools that enable manual, analog, and intuitive exploration,
like the classical drawing on canvas with paintbrushes.

The concept of sketching haptics emphasizes rapid prototyping
with low-fi haptic design materials, focusing on experiential touch

1https://www.microsoft.com/en-us/windows/paint
2https://www.adobe.com/products/illustrator.html
3https://procreate.com/

qualities [17] and somatic appreciation [27]. While our work shares
a similar motivation, we propose a design metaphor of “crafting
haptics,” which carries two layers of meaning. First, since haptics is
inherently about touch, we aim to explore the design of expressive
haptic interactions directly through hand manipulation, as intuitive
as clay crafting in a dynamic way. Second, we strive to investigate
how designers, using approachable, analog materials, can craft
with “care, skill, and ingenuity” (Merriam-Webster [16]), potentially
leading to virtuoso performances in haptic design. As a first attempt,
this work explores how to enable designers to “craft” dynamic pin-
based force feedback that can be experienced across the body. We
chose the pin display format for its potential to render versatile
tactile sensations and its recognition as a standard form factor in
haptic interfaces [3].

We demonstrate Shape-Kit [29], a novel hybrid haptic design
toolkit that bridges the gap between exploratory design and repro-
ducibility, embodying the “crafting haptics” metaphor. By leverag-
ing human power and hand dexterity, the Shape-Kit analog tool
can transduce and amplify (or minify) human touch behaviors into
pin-based haptic sensations through a flexible and long transducer,
enabling free-form sensorial exploration of touch across the body.
Shape-Kit allows designers to experiment with various crafting ap-
proaches, from bare-hand manipulation to using hand-held props,
similar to sculpting with clay. Textures and materials can be at-
tached to the output end, much like paintbrushes can have different
tips for dipping in various pigments. Just as paintings can be pho-
tographed and music can be recorded, we employ an ad-hoc method
to capture and digitize crafted touch patterns, which could be ap-
plied to computational pin-based haptic interfaces. Our graphical
user interface (GUI) includes real-time 3D visualization, recording,
tuning, and playback functionalities. To showcase a full design
cycle, we built a programmable shape display for tangible play-
back. Our crafting haptics method aims to foster intuitive analog
touch prototyping, while the tracking method enables convenient
digitization of the crafted outcomes.

2 Design of Shape-Kit
Shape-Kit [29] is a design toolkit to embody the “crafting haptics”
design metaphor, facilitating the exploration of on-body expressive
haptics. In this section, we present the design of the Shape-Kit
toolkit, incorporating both analog and digital systems. We open
source the toolkit by sharing the hardware components, 3D printing
models, and software package4.

2.1 Shape-Kit Analog System
We developed Shape-Kit (Fig. 2), featuring two passive shape dis-
plays connected by flexible Bowden cables. Specifically, we used
914mm Gold-N-Rods cables5, which consist of a stainless steel mul-
tistrand internal cable that moves smoothly within a nylon tube.
Bowden cables transmit linear motion and force to a spatially dis-
tant and extended point from the actuation side, which has been
employed in tabletop shape displays [4, 13, 18]. We leveraged its
flexible feature to explore the hand-held potential. This design al-
lows the touch perception area on the body to be distanced from

4https://www.ranzhourobot.com/shapekit
5Sullivan Cable Type .032 Gold-N-Rods Rods 36 inch

https://doi.org/10.1145/3706599.3721280


Demonstrating Shape-Kit: A Design Toolkit for Crafting On-Body Expressive Haptics CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

Large Display & Pin

Gold-N-Rods Cable 

m
ar

ke
r

lo
ng

 &
fle

xi
bl

e

Window Module

pr
op

s &
 ti

ps

m
ag

ne
t

al
te

rn
at

ive
 fr

am
e

tu
be

Small Display

Medium Display

al
te

rn
at

ive
 h

an
dl

e

Tracking Module

w
eb

-c
am

Small Pins

Figure 2: Shape-Kit Toolkit and its assembly

Table 1: Pin scales feature for displays in two Shape-Kit modules. Target areas are based on point localization threshold [15]

Module Pin Display Scale Target Area Potential Crafting Method Spring Scale

M1 Small Display (S)
5x5mm

Fingers, hallux,
cheek

Use 1-2 fingers to actuate the entire
display, creating uniform shapes am-
plified on the Large display

Coil diameter: 4mm; Free length: 15mm
Wire diameter: 0.3mm; Revolutions: 12revs
Spring constant: 0.1N/mm

M2 Medium Display (M)
10x10mm

Foot sole, calf,
belly, forehead,
forearm, palm

Actuate 2-3 pins with one finger for
controlled patterns, or use the palm
to create uniform shapes amplified on
Large display

Coil diameter: 4mm; Free length: 15mm
Wire diameter: 0.3mm; Revolutions: 12revs
Spring constant: 0.1N/mm

M1&2 Large Display (L)
15x15mm

Back, thigh,
breast, upper
arm

Push individual pin or multiple pins
with fingers or palm to create de-
tailed patterns that can be minified
to smaller scales

Coil diameter: 4mm; Free length: 8mm
Wire diameter: 0.3mm; Revolutions: 5revs
Spring constant: 0.3N/mm

the crafting hands, enabling more flexible body positioning for solo
use and potentially reducing social discomfort during collaborative
prototyping.

The shape displays are spring-back on both sides, enabling bi-
directional crafting and rendering. We used stainless steel springs
to accommodate the size and weight of the pins that required more
resilient springs. The chosen springs are still soft and spongy to al-
low flexible actuation (Table 1). To provoke exploratory outcomes,
we intentionally introduced ambiguity [8, 30] by incorporating
mismatched scales between the 5x5 pin arrays on each side. The
cubic-shaped pins, with minimal spacing, support fluid actuation
and continuous shape rendering. Pin scales were determined based

on point localization thresholds [15] while also accommodating var-
ious crafting strategies (Table 1). Shape-Kit includes two modules,
both with large displays, paired with either small (M1) or medium
displays (M2). They are lightweight and portable (M1: 290g, M2:
340g). By simply pressing or rubbing with hands on one side, Shape-
Kit can amplify (or minify) the crafted touch signals into pin-based
haptic patterns transduced through the long cables. The output
display can be moved around to test on different body parts or on
another person’s body.

Shape-Kit is modular and reconfigurable (Fig.2), fabricated by
FDM 3D printing. The small display can transform into a medium
size by magnetically snapping pin caps, while the housings for the
displays are also swappable. The large display can swap frames (e.g.,
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a frame attached with velcro was used in the user study), with future
iterations potentially adopting the same modular approach as the
smaller displays. The default pin tips are flat, but other shapes of
tips can be attached via embedded magnets or flexible fabric covers.
This reconfigurable feature enhances Shape-Kit’s versatility as a
haptic design tool.

2.2 Shape-Kit Digital System
2.2.1 Tracking System. The Shape-Kit tracking system was in-
spired by Skinflow [24], which used liquid transmission and optical
sensors to measure pressure. Instead of dyed liquid, we leveraged
Bowden cable’s mechanism, where the internal cable moves within
a semi-transparent tube. As the pin’s actuation motion is transmit-
ted through the cable, we applied dark markers (spaced 100mm
apart) on the internal cable (Fig. 2 & 3b) to make the cable displace-
ment more visible, enhancing precise computer vision tracking. The
Bowden cables for each pin are meticulously arranged and secured
in a window module, which allows clear detection of each pin’s
movement to map them into a data array. The window module can
be moved along the cable and tightened using side knobs.

Designers can document crafted sensations by magnetically
mounting the tracking module (Fig. 3c). After testing several optical
sensors, we found a wide-angle webcam ideal for short-distance,
low-latency tracking6. We also integrated a portable camera light

6HD 1080P USB CCTV Mini Security Camera (2.8 mm lens, 120-degree angle)

into the module to ensure stable lighting. The weight of the tracking
module, including the webcam and light, is 90g. To initiate tracking,
the designer first turns on the light, connects the camera to a PC
via USB and runs our custom Python script that opens a camera
tracking view for calibration and detection. The vision system op-
erates continuously to take image frames at a 30-Hz frame rate,
detect the coordinates of each marker in the frame, and map them
to a data array. By calibrating and calculating the relative changes
in the marker coordinates, the vision system accurately tracks each
pin’s movement. They can then be proceeded by Shape-Kit GUI.

2.2.2 Graphic User Interface. Shape-Kit GUI used in our design
study [29] was built with Processing and running on a PC, featuring
a digital simulation of the shape display (Fig. 3a). The GUI accesses
the Python script for tracking, allowing designers to synchronize
the digital simulation with the touch patterns crafted on analog
Shape-Kit in real-time. When pressing the “Start Sync” button, the
software automatically calibrates the first frame as the baseline.
Subsequent movements are tracked as displacement differences
from this baseline and are mapped to each pin’s height, which is
displayed in the 3D simulation.

Designers can also digitally record and playback shape patterns,
with additional controls for tuning general pin height and mo-
tion speed. We also developed a web-app version of the GUI for
enhanced usability and stability (Fig. 3e-g). Both software applica-
tions’ packages are open-sourced.
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2.2.3 Programmable Shape Display. To fully demonstrate the “craft-
ing haptics” design metaphor, we developed a programmable shape
display (Fig. 4) matching the scale of the large analog Shape-Kit
display (15×15mm) and weighing 330g. Each pin is actuated by a
micro plastic-gear linear servo 7 and arranged in modular units for
easy reconfiguration and repairs. The display is entirely 3D-printed
and controlled by an Arduino Nano with two Adafruit PCA9685
16-channel servo drivers. When connected to the Shape-Kit GUI, it
can playback recorded touch patterns in tangible form.

a b

Figure 4: Servo-driven programmable shape display.

3 Conclusion
We present Shape-Kit, a hybrid haptic design toolkit that bridges
the gap between exploratory design through analog touch proto-
typing and reproducibility through ad-hoc digitization. It embodies
our “crafting haptics” design metaphor, where we envision design-
ing expressive on-body haptics through intuitive hand-crafting,
inspired by how visual design stems from paper-pen sketching.
We demo Shape-Kit to showcase how it facilitated collaborative
sensorial exploration and diverse crafting methods to create rich
and versatile on-body expressive touch stimulations.
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